
T STI2D Cours

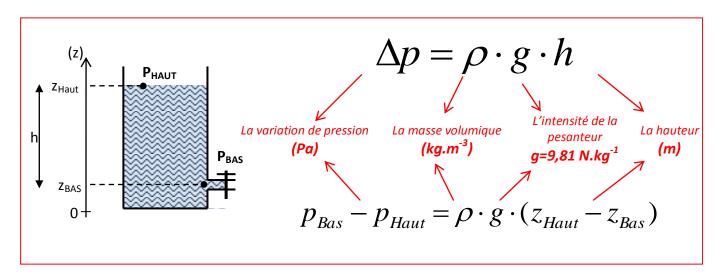
Chap 5 : Pression et débit d'un fluide

Physique Chimie

I.Pression d'un fluide

Convertir une pression:

Le bar	1 bar	=	10 ⁵ Pa
L'hectopascal	1 hPa	=	100 Pa
L'atmosphère	1 atm	=	1,013 bar \approx 1,0 bar


II. Principe fondamental de l'hydrostatique

Un corps plongé dans un liquide subit la pression exercée par le poids du liquide.

Lorsque le liquide est immobile la différence de pression ΔP entre deux points est donnée par la relation fondamentale de l'hydrostatique ci-dessous :

<u>Lien vidéo 1min29</u> <u>Vidéo : C'est pas sorcier</u>

Rappel: masse volumique de l'eau

 $\rho_{eau} = 1 \text{ kg.L}^{-1} = 1000 \text{ kg.m}^{-3}$

T STI2D Cours

Chap 5 : Pression et débit d'un fluide

Physique Chimie

III. Mesure de la pression

La pression se mesure avec un manomètre (ou pressionmètre). Il existe différentes mesures de pression:

- Certains manomètres mesurent la pression absolue P_{abs}. La pression absolue est la pression mesurée par rapport au vide absolue. Elle prend donc en compte la pression atmosphérique.

- D'autres manomètres mesurent la pression relative P_{rel}. La pression relative se définit par rapport à la pression atmosphérique existant.

Pression absolue

 $P_{abs} =$

Pression relative

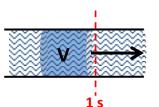
 P_{atm}

Pression atmosphérique

+ P_{rel}

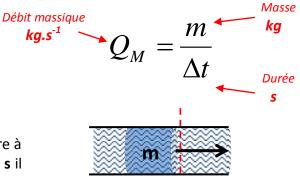
IV. Ecoulement stationnaire d'un fluide

Un écoulement est dit stationnaire quand sa vitesse en un point ne varie pas.



IV.1. Débit volumique

Le débit volumique, de symbole \mathbf{Q}_{V} ou \mathbf{D}_{V} , représente le volume du fluide qui s'écoule par unité de temps.


Le débit volumique
$$m^3.s^{-1}$$
 ou $L.s^{-1}$ $Q_V = \frac{V}{\Delta t}$ La durée

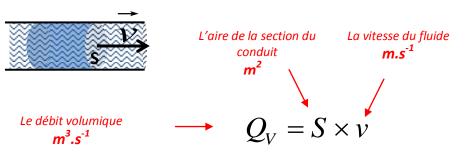
Exemple: Le débit moyen d'un robinet de baignoire est de $D_V = 0.2 \text{ L.s}^{-1}$ signifie qu'en 1 s il y a 0.2 L d'eau qui s'écoule.

IV.2. Débit massique

Le débit massique, de symbole Q_m ou D_m , représente la masse du fluide qui s'écoule par unité de temps.

Exemple : Le débit massique en carburant d'une voiture à 90 km.h⁻¹ est de $D_m = 1,67.10^{-3} \text{ kg.s}^{-1}$ signifie qu'en 1 s il y a 1,67 g de carburant consommé.

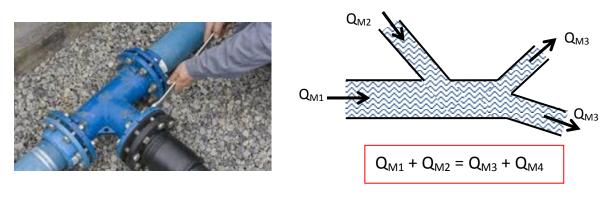
Rappel : Relation entre la masse m et le volume V par la masse volumique ρ :


$$\mathbf{m} = \rho \mathbf{x} \mathbf{V} = = => \mathbf{Q}_{m} = \rho \mathbf{x} \mathbf{Q}_{V}$$

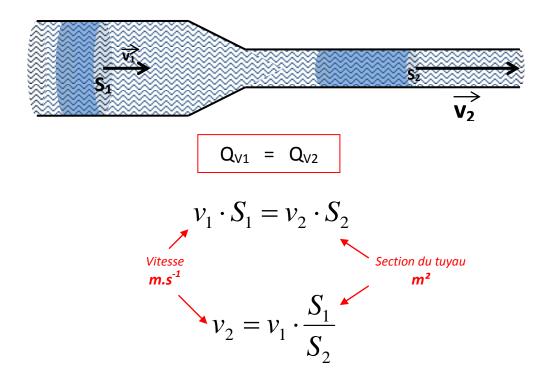
T STI2D Cours

Chap 5 : Pression et débit d'un fluide HABITAT

Physique Chimie


IV.4. Loi de conservation de la matière et conséquences

Lors d'un écoulement d'un fluide la matière se conserve.


Conséquences:

Conservation du débit massique

La somme des débits massiques rentrants est égale à la somme des débits massique sortant

Conservation du débit volumique pour un fluide incompressible

